Orbital eccentricity
Contents
Definition
In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape.The eccentricity may take the following values:
- circular orbit:
- elliptic orbit:
(see Ellipse)
- parabolic trajectory:
(see Parabola)
- hyperbolic trajectory:
(see Hyperbola)
or in the case of a gravitational force:
For values of e from 0 to 1 the orbit's shape is an increasingly elongated (or flatter) ellipse; for values of e from 1 to infinity the orbit is a hyperbola branch making a total turn of 2 arccsc e, decreasing from 180 to 0 degrees. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola.
Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1 (or in the parabolic case, remains 1).
For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable.
For elliptical orbits, a simple proof shows that arcsin(
Etymology
From Medieval Latin eccentricus, derived from Greek ekkentros "out of the center", from ek-, ex- "out of" + kentron "center". Eccentric first appeared in English in 1551, with the definition "a circle in which the earth, sun. etc. deviates from its center." Five years later, in 1556, an adjective form of the word was added.Calculation
The eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector:is the eccentricity vector.
is the radius at apoapsis (i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse).
is the radius at periapsis (the closest distance).
Examples
Gravity Simulator plot of the changing orbital eccentricity of Mercury, Venus, Earth, and Mars over the next 50,000 years. The 0 point on this plot is the year 2007.
Mercury has the greatest orbital eccentricity of any planet in the Solar System (e=0.2056). Before 2006, Pluto was considered to be the planet with the most eccentric orbit (e=0.248). The Moon's value is 0.0549. For the values for all planets and other celestial bodies in one table, see List of gravitationally rounded objects of the Solar System.
Most of the Solar System's asteroids have orbital eccentricities between 0 and 0.35 with an average value of 0.17.[2] Their comparatively high eccentricities are probably due to the influence of Jupiter and to past collisions.
The eccentricity of comets is most often close to 1. Periodic comets have highly eccentric elliptical orbits with eccentricities just below 1; Halley's Comet's elliptical orbit, for example, has a value of 0.967. Non-periodic comets follow near-parabolic orbits and thus have eccentricities even closer to 1. Examples include Comet Hale–Bopp with a value of 0.995[3] and comet C/2006 P1 (McNaught) with a value of 1.000019.[4] As Hale–Bopp's value is less than 1, its orbit is elliptical and will in fact return.[3] Comet McNaught has a hyperbolic orbit while within the influence of the planets, but is still bound to the Sun with an orbital period of about 105 years.[5] As of a 2010 Epoch, Comet C/1980 E1 has the largest eccentricity of any known hyperbolic comet with an eccentricity of 1.057,[6] and will leave the Solar System indefinitely.
Neptune's largest moon Triton has an eccentricity of 1.6 × 10−5,[7] the smallest eccentricity of any known body in the Solar System; its orbit is as close to a perfect circle as can be currently measured.
0 komentar:
Posting Komentar